RIGID PAVEMENT DESIGN (INTERIOR FLOOR SLABS)

PROJECT:		
LOCATION: _		DATE:
	D	esign By: Checked By:
SCOPE: Design live loads (loads		or slabs-on-grade subject to vehicular loads and to high stationary vable items).
REFERENCE:	*	Concrete Floor Slabs-on-Grade Subjected to Heavy Loads. Pavement Design for Roads, Streets, Walks, and Open Storage Areas

NOTE: The use of this form does not preclude compliance with all requirements of TM 5-809-12 or TM 5-822-5.

I. NONREINFORCED STRENGTH DESIGN:

1. <u>Traffic Volume(s)</u>:

a. Category of Traffic (page 3-1 & paragraph 3-2, Traffic Distribution).

b.	Largest Maximum	Maximum Load	Maximum
<u>Category</u>	Axle Load (kips)*	Capacity (kips)	Operations/Day
I	10	2 to 4	
II	15	4 to 6	
III	25	6 to 10	
IV	36	10 to 16	
V	43	16 to 20	
VI	120	20 to 52	

^{*}Subsequent tables and design curves use these values to represent each category.

<u>Note</u>: Data from Facilities Engineer's office and the Using Agency.

2.	Design	Index:

a. <u>Categories I, II, III</u>: Design index = __ (page 5-1, Table 3, Traffic Categories for Design Index. This table good for all Cat. I and II forklifts, but only up to 5 passes of a Cat III forklift; i.e., 25-kip max axle-load forklift.)

b. Categories III, IV, V, VI:

- (1) <u>No design indices</u>: Separate curves for forklift max axle-loads of 25-kips and greater.
- (2) <u>Total design traffic</u>: Total anticipated traffic volume is calculated for each max axle load forklift category over an anticipated 25-year life for the pavement.

- 3. <u>Modulus of Subgrade Reaction (K)</u> = ____ pci (Based on Field Plate Bearing Tests) or (Based on Table 2, TM 5-809-12 & Fig 9-1, TM 5-822-5.) (Equivalent K at top of ___-inch base course)
- a. If test results are not available, refer to Table 2, Typical Values of Modulus of Subgrade Reaction, page 4-2, for typical values based on Unified Soils Classification System soil classification and on the in-situ moisture content of the soil. This yields a soil K-value = ____ psi.
- b. Read para 5-3e, Non-uniformity (Subgrade), page 5-5: and para 5-5a, Subgrade Conditions (Steel Reinforcing), page 5-6..
- c. When a base course is used, use Fig. 9-1, TM 5-822-5 (Jun 92) to determine the K-value on top of the base course; as a function of the base course thickness. This yields a K-value = ___ psi on top of the __-inch base course.. It is good practice to run field plate bearing tests to confirm this value.

4. Concrete 28-day Flexural Strength (P) = psi.
Based on compressive strength: $P = (7.5 \text{ to } 10) \times SQRT$ (Compressive Strength) Ref: p.5, Design & Control of Conc Mixtures, PCA, 13th Edition Use 7.5 to 8 for gravels and 9 to 10 for crushed stone. $P = x SQRT$ (psi) = psi.
5. Nonreinforced Pavement Thickness:
a. Theoretical nonreinforced pavement thickness $(h_d) = \underline{\hspace{1cm}}$ inches (to nearest 0.1 inch).
(1) <u>Categories I, II, III</u> : Design index curves, Figure 5-1, Design Curves for Concrete Floor Slabs, page 5-2. These curves are good for all Cat. I and II forklifts, but only up to 5 passes of a Cat III forklift; i.e., 25-kip max axle-load forklift.). This yields $h_d = \underline{\hspace{1cm}}$ inches.
(2) <u>Categories III, IV, V</u> : Design curves by Axle Load & Passes, Figure 5-2, Design Curves for Concrete Floor Slabs for Heavy Forklifts, page 5-3. This yields h _d = inches.
(3) Design is based on greatest thickness required from design curves for design index and for Category III, IV, and V traffic.
b. Nonreinforced pavement thickness = inches.
(<u>NOTE</u> : EIRS 78-04 Revision - Pavement Concrete. Thickness shall be expressed to the nearest whole or half inch. Round up midway values.)
6. <u>Steel Reinforcement for Nonreinforced Concrete Slabs</u> (for odd-shaped slabs, for slabs with mismatched joints, and where non-uniform subgrade support is a concern in frost regions.).
a. No reduction is allowed in pavement thickness for this reinforcement.
b. Minimum 0.06% distributed steel required in both directions (paragraph 5-5, Steel Reinforcement, pages 5-6 & 5-8).
.0006 x" x 12 "/' = square inch steel per foot of concrete

<u>USE _'' x _'' - W _ x W _ WWM</u> yields: _____ square inch steel per foot of concrete (closest common stock size)

Maximum Slab Length (Maximum Joint Spacing):

II. REINFORCED STRENGTH DESIGN:

1. <u>Purpose</u>: To increase the size of floor slab panels between joints or to decrease slab thickness requirements.

2. Graphic solution (nomogram):

- a. Required thickness of nonreinforced floor slab to nearest 0.1 inch = $___$ inches (h_d) (from step I5).
 - b. Desired thickness of reinforced floor slab = $__$ inches ((h_r) (6-inch minimum).
 - c. Nomogram: Page 5-9, Figure 5-4, Design Thickness for Reinforced Floor Slabs.
 - (1) Percent steel required = (S, %)
- (2) Maximum allowable length of reinforced pavement slabs = ___ feet (L) (25 feet minimum, 75 feet maximum).

(S%/100) x h_r " x 12"/' = No. of square inches steel required per foot of concrete ____ x ____" x 12"/' = ____ square inch steel per foot of concrete

<u>USE _" x _" - W _ x W _ WWM</u> yields: _____ square inch steel per foot of concrete (closest common stock size)

<u>Maximum Slab Length (Maximum Joint Spacing)</u>:

III. FINAL PAVEMENT SECTION:

1. Interior Concrete Pavement Section:
" Concrete (psi flexural strength @ 28 days) with _" x _" - W x W WWM placed" below the concrete surface. 6-mil polyethylene sheeting (Vapor Barrier) " RDM (#57) Base Course {AASHTO M43, #57 crushed stone }
Maximum allowable length of reinforced pavement slabs = feet (L) (25 feet minimum, 75 feet maximum).
2. <u>Reinforcing Around Bollards, Columns and Other Projections Through Pavement Surface</u> : To minimize cracking around projections and to hold these cracks together, place the following additional reinforcing at the corners of all projections, with a minimum of four sets of bars around circular projections greater than 6 inches in diameter:
2 No. 4 Reinforcing Bars, each 4 feet long, Spaced 4 inches apart. Place bars at the mid-point of the slab
3. <u>Dowel Size and Spacing</u> : (Ref Table 5-3, Dowel Size and Spacing, page 5-23)
inch Dia. Bar, inches long (min) Spaced inches (min) center to center.
IV. MAXIMUM ALLOWABLE STATIONARY LIVE LOAD:
1. <u>Concrete floor slab thickness</u> = inches (from Step III-1a).
2. <u>28-day Flexural strength of concrete (P)</u> = psi. (from step I-4)
3. <u>Stationary live load</u> = psf (Table 3-1, Maximum Allowable Stationary Live Load, page 3-3).
4. Modulus of Subgrade Reaction (K) = pci. (from step I-3)
5. <u>Constant factor</u> = (Table 3-1, page 3-3).
6. Maximum stationary live load = x = psf (Step IV3) x (Step IV5) Note: The potential consolidation of underlying soils shall be evaluated to determine that no detrimental settlements will occur before specifying stationary live loads greater than 500 psf.